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Under certain conditions, focused laser excitation in semiconductor quantum well structures can lead to a
charge separation and a circular reaction front, which is visible as a ring-shaped photoluminescence pattern.
The diffusion-reaction equations governing the system are studied here with the aim of a detailed understand-
ing of the steady state. The qualitative asymmetry in the sources for the two carriers is found to lead to unusual
effects which dramatically affect the steady-state configuration. Analytic expressions are derived for carrier
distributions and interface positions for a number of cases. These are compared with steady-state information
obtained from simulations of the diffusion-reaction equations.
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I. INTRODUCTION

In mid 2002, two semiconductor-optics experimental
groups reported dramatic ring-shaped photoluminescence
patterns when a focused laser was used to excite electron-
hole pairs near a coupled quantum well system biased with
an electric field �1,2�. Despite initial speculation invoking
Bose-Einstein condensation of excitons, it was later found
that the luminescence ring is well explained by classical
reaction-diffusion dynamics of the electrons and holes �3,4�.
The idea is that there is a net hole injection into the quantum
well near the laser irradiation spot, together with an electron
source due to a leakage current that is roughly uniform
across the two-dimensional �2D� quantum well plane. This
combination can lead to a charge-separated steady-state con-
figuration, with a circular hole-rich island sustained by the
localized hole source in an electron-rich sea. The interface,
where outward-diffusing holes recombine with inward-
diffusing electrons, is the luminescence ring.

The position of the interface, i.e., the radius of the lumi-
nescence ring, is not well understood theoretically, despite
some theoretical �3,5� and experimental �5,6� efforts. While a
full understanding may or may not require extra ingredients
in addition to the diffusion-reaction model �5�, a thorough
study of the behavior of the interface position within the
diffusion model is certainly a necessary first step. The
present paper fills this gap by presenting a detailed analysis
of the steady state, addressing aspects such as the position
and width of the interface, density distributions, etc. There
are a number of length scales in the problem which we iden-
tify cleanly. The phenomenon is put into the context of pre-
vious theoretical studies of steady-state reaction fronts and
variations thereof �7–15�. By considering various possible
relative values of the tunneling decay rates of the two carrier
species, we clarify the roles of the tunneling strengths in
determining the steady-state configuration. A curious feature
of the steady state is that the reaction zone has, in addition to
the sharp interface, an extended feature on one side where
the luminescence does not vanish but instead is a nonzero
constant. This aspect turns out to have a drastic influence on
the interface position and the overall steady-state structure,
which we explain in detail.

In comparison with previous theoretically studied
diffusion-annihilation systems �7–15�, the present problem
has several unusual features which justify an extended study.
These include the single-particle �tunneling� decay of one or
both species, and the fact that one of the reacting species has
a spatially extended source spanning both sides of the inter-
face. In addition, while diffusion-controlled reaction inter-
faces and patterns have been studied in a wide variety of
chemical, biological, and fluid flow contexts �16–18�, they
are rather rare in electronic systems. Indeed, this may well be
the only currently known example of a diffusion-limited non-
equilibrium reaction front or pattern in electronic systems.
Furthermore, there is the intriguing possibility of studying
quantum phenomena in the ring region �19,20�, where the
carriers have had time to cool down to quantum degeneracy.

Section II introduces the diffusion-reaction equations,
simplifying source details, and also presents the important
length scales. Section III contains the analysis of the steady
state and the main results of this paper. In Sec. IV, our cal-
culations are put into perspective by discussing experimental
issues and briefly reviewing the relevant theoretical litera-
ture. The method used for numerical evolution of the
diffusion-reaction equations is outlined in Appendix A.

II. DIFFUSION-REACTION MODEL

For experimental details beyond what is sketched here,
the reader is referred to Refs. �1,2,6,22�. The phenomenon
occurs in a two-dimensional quantum well system, either a
single well or two closely separated parallel wells. Electron-
hole pairs are created in the vicinity of the well�s�, mainly in
the substrate, by a focused laser excitation.

A voltage is applied across the well�s� using conducting
electron-rich �n+� regions on both sides of the well�s� as
leads. The original motivation was to enhance the lifetime of
excitons or electron-hole gases by spatially separating elec-
trons and holes in the direction transverse to the well�s�. A
band-structure cartoon of the experimental setup is shown in
the inset of Fig. 1. Due to the electric field bias, there is an
influx current of electrons into the well as well as a
tunneling-out process. In addition, the holes can tunnel out in
the other direction; this corresponds to an electron from the
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left lead or substrate filling up one of the hole states in the
well. The three processes are shown by arrows in the Fig. 1
inset. Note that there is no source of holes due to the biasing.
Holes are only created by photoexcitation.

Incorporating the above effects, one can write down two-
dimensional diffusion-annihilation equations for the densities
of holes �nh� and electrons �ne� within the quantum well�s�:

�nh

�t
= Dh�

2nh + Phe−r2/lL
2

− �nhne −
1

�h
nh, �1a�

�ne

�t
= De�

2ne + Pee
−r2/lL

2
− �nhne + G −

1

�e
ne. �1b�

The Dh,e are diffusion constants. The nh,e /�h,e terms model
decay due to carriers tunneling out of the well�s�, the �’s
being tunneling lifetimes. G is the spatially uniform source
term for electrons, which is absent for holes. The � terms
represent electron-hole recombination. The Ph,e terms are the
laser excitation terms; the laser is focused onto a spot
roughly of radius lL.

By numerically evolving Eqs. �1� in time, one can deter-
mine the steady-state carrier distributions and luminescence
after Ph,e are turned on. A typical steady-state distribution,
obtained with Ph� Pe, is shown in Fig. 1. The simulation
�Appendix A� is one-dimensional, so that radial plots are
sufficient. The steady state displays a species-separated con-
figuration, together with a peak in the luminescence marking
the interface, as described previously. For Pe�0, the lumi-
nescence profile also shows an inner peak near r=0, corre-
sponding roughly to a central luminescence spot observed
experimentally.

Typical values of the parameters are taken to be of the
following orders: D’s, several cm2/s; �’s, 10−4 s; �,
10−3 s−1 cm2; lL, 10−3 cms; G, 1015 s−1 cm−2; and PlL

2’s,
1012 s−1. Units will be omitted in the rest of this paper.

Equation �1�, with several variations, was proposed in
Refs. �3,4� as the luminescence ring mechanism, and studied
further in Refs. �5,6,19–21�. For a restricted case, Ref. �3�
also contains a minimal analytic treatment of the steady
state.

For the charge separation phenomenon, we need more
holes diffusing out of the excitation region than electrons. In
previous studies �3–6�, the philosophy has been to invoke
differences of unknown origin in the efficiency of accumu-
lation in the well�s�, i.e., to use Ph� Pe without detailed
explanation. The current understanding of the carrier asym-
metry is thus unsatisfactory. In fact, it is possible to have an
excess of holes and a resulting luminescence ring with Ph
= Pe. However, the present author will postpone to a future
publication an analysis of the source asymmetry and of the
inner spot structure.

Since we neglect the inner structure in this study, it is
convenient to drop the electron source altogether �Pe=0�,
and assume a point source for the holes, i.e., Phe−r2/lL

2
is

replaced by Px��r�. For comparison with the numeric simu-
lations, where a finite lL has been used, the correspondence is
Px��lL

2 Ph. This is obtained by equating an outward flux for
the point and Gaussian sources. One result of omitting the
electron source is the absence of an inner luminescence spot
�Fig. 1, solid line in lower panel�. Moreover, the expressions
for hole density in Sec. III will diverge at the illumination
spot. This �minor� unphysical result is a result of the un-
physical “point” source.

We now identify the length scales present in the problem.
The two most important ones are the depletion lengths for
electrons and holes, le=�De�e and lh=�Dh�h. The depletion
lengths provide the length scales for the variation of steady-
state densities, analogous to the diffusion lengths �Dt in the
literature on time-dependent front formation between two
initially separated reactants �8–11�, where �Dt gives the spa-
tial variation length scale after time t.

The ratio of the source strengths, Px and G, provides a
third length scale, which we define as lsrc=�Px /�G. The
radius of the ring-shaped interface increases monotonically
with the length lsrc. The interface radius lR itself, and the
interface width lw, are not input parameters in the problem
but emerge from the analysis as important length scales. We
are interested in cases where the interface is sharp, i.e., lw
� lR.

Other lengths appearing in the problem can be expressed
in terms of the ones introduced above.

III. ANALYSIS OF STEADY STATE

Analytic treatment of the steady state is simpler if one
neglects the hole tunneling ��h→��, so that the hole deple-
tion length lh=�Dh�h disappears from the problem. Note that
a finite �e is necessary to provide the uniform electron back-
ground at large r. It is also convenient to first consider an
infinitely sharp interface �lw=0�. In addition, the treatment in

FIG. 1. �Color online� Top panel: steady-state carrier density
distributions. nh dominates at small r and ne dominates at large r.
Bottom panel: luminescence profile. Dashed and solid lines corre-
spond to Pe�0 and Pe=0, respectively. The hole excess Ph− Pe is
the same in the two cases, so that the only difference is in the
structure around r=0. Lower-right inset: band-structure schematic
�single well�. Arrows indicate tunneling processes described in text.
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Ref. �3� neglects the electron density on the hole side of the
interface, and vice versa. We will consider this simplified
model in III A, first without assuming anything about lR/ le,
and then writing out both lR� le and lR� le limits.

In Sec. III B, corrections due to nonzero ne in the hole
side are derived. In Sec. III C, a finite �h is reinserted, and in
Sec. III D the width of the sharp interface itself is studied.

A. Simplified model

With �h→�, the equations for steady state are

Dh�
2nh + Px��r� − �nhne = 0, �2a�

De�
2ne − �nhne + G −

1

�e
ne = 0. �2b�

If the hole and electron densities are strictly zero outside and
inside the ring, respectively, then the nonlinear reaction
terms in Eqs. �2� then drop out both inside and outside the
ring. The resulting linear equations can be exactly solved:

nh�r� =
Px

2�Dh
ln� lR

r
�	�lR − r� , �3�

ne�r� = G�e	1 −
K0�r/le�
K0�lR/le�


	�r − lR� . �4�

Here K
�x� is a modified Bessel function of the second kind.
Note that Eq. �3� is very similar to Eq. �17� of Ref. �7�,

where also a steady state is analyzed. On the other hand, Eq.
�4� involves a length scale �le�, which is not so common in
previous studies of steady-state fronts. Instead, it resembles
more the time-dependent case of Refs. �8–11�, where the
corresponding length scale is determined by the time t,
analogously to our �e.

In the lR� le limit, Eq. �4� can be written approximately
as

ne�r� = G�e	1 −
ln�r/le�
ln�lR/le�

	�le − r�
	�r − lR� , �5�

provided we are not interested in the ne�r� behavior for r
� le. In the limit lR� le:

ne�r� = G�e	1 −
e−r/le/�r

e−lR/le/�lR

	�r − lR� . �6�

With the expressions for the densities, one can now match
the electron influx and hole outflux currents �j=−D�n� to
determine the ring radius lR in the simplified model:

Dh	 Px

2�Dh

1

lR

 = De	G�e

le

K1�lR/le�
K0�lR/le�


 . �7�

This equation can be solved numerically to give the ring
position lR as a function of the hole source strength Px, or
more “universally,” to express lR/ le as a function of �lsrc / le�2.

The hole diffusion constant Dh drops out, and so the in-
terface position is independent of Dh. In addition, the recom-
bination rate � does not enter because of the zero-width ap-

proximation for the interface. This approximation turns out
to be surprisingly good as far as lR is concerned; as long as
there is a well-defined peak in the luminescence, changing �
affects the width and height of the peak profile but not the
position �Fig. 2�a��. We also note that the two source param-
eters enter only as the ratio Px /G and not individually.

In the lR� le and lR� le limits, Eq. �7� can be solved ana-
lytically for lR, giving, respectively,

lR = le exp�− 2�Gle
2/Px� = le exp	 − 2

�lsrc/le�2
 �8�

and

lR = Px/2�Gle = lsrc
2 /2le. �9�

Equations �3�, �5�, and �8� have been obtained previously
�3�. Ref. �3� has a spurious Dh

−1 factor in the exponent of
expression �8� for lR.

The theory developed in this section, based on the ap-
proach of Ref. �3�, is now evaluated by comparing with data
from the numeric simulation �Appendix A� of the diffusion-
reaction equations. In Fig. 2�a�, luminescence profiles have
been plotted for several cases to show that the ring radius
remains unchanged if the recombination rate � is changed
�an assumption of the theory�, if the hole diffusion constant
Dh is changed �a prediction of the �h→� theory�, and if the
electron injection current density G and hole injection rate

FIG. 2. �Color online� Assessment of the simple model in Sec.
III A and in Ref. �3�. �a� Luminescence profiles ��nhne� shown for
situations in which lsrc, le are fixed but other parameters vary. Com-
pared to the solid curve, the dashed curve has � decreased by a
factor of 25, while the dotted curve has Dh decreased by a factor of
5, all other parameters remaining fixed. Dash-dotted curve has G
and Px decreased by a factor of 5, while keeping the ratio Px /G
fixed. �b� The solid line is hole density nh�r� lR� in a hole-rich side
of the interface, from simulation. Dash-dotted line shows the best fit
of the form �ln�lR/r�. �c� Electron density distribution ne�r� lR�
from simulation, normalized to and subtracted from ne���=G�e.
Dash-dotted line is a fit to K0�r / le�, Eq. �4�. �d� Radius of the ring,
in units of the electron depletion length le, plotted as a function of
the hole source strength Px, in units of �Gle

2.
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Px are both changed while their ratio Px /G=�lsrc
2 is kept

fixed �another prediction of the theory�. In each of these
cases the width of the interface is modified, as discussed in
Sec. III D.

In Fig. 2�b�, the steady-state hole density profile obtained
from simulation of Eqs. �1� is compared to the logarithmic
prediction, Eq. �3�. The agreement is reasonable but imper-
fect; an improvement will be found in the next section.

In Fig. 2�c�, the expression �4� for the electron densities
outside the ring, ne�r� lL�, is tested against simulation data.
There is some deviation at large distances, which remains
unexplained. The density profiles of Figs. 2�b� and 2�c� are
taken from a steady-state solution with lR�0.18.

Finally, in Fig. 2�d�, the radius of the circular interface,
obtained from direct simulation of Eq. �1�, is plotted against
hole injection intensities Px. This is compared with Eq. �7�,
plotted as a solid line. The lR� le limit is shown by a dashed
line. For larger radii �lR� le and lsrc� le�, the prediction for
the radius is seriously at odds with the numerical results. The
simulations suggest that the dependence on Px /G follows a
lower exponent than the linear dependence obtained in this
section. This discrepancy is corrected in the next section.

B. Corrections from “dark” interior

We now turn our attention to the hole-rich region within
the ring, at radial distances r� lR, far enough from the reac-
tion front so that nh�ne. We will now encounter effects of
the extended source term for the electrons, i.e., of the
position-independent G. Taking account of these effects turns
out to be the key to overcoming the failure in Sec. III A to
predict the ring radius for lR� le.

Some of the figures published by Ref. �1,3� suggest a
nonzero luminescence intensity in the nominally dark region
between the inner spot and the ring. The small but nonzero
intensity in the ring interior seems to be roughly constant
between the inner spot and the ring, but a more quantitative
statement is hard to extract from the published figures. To the
best of the present author’s knowledge, this feature has not
been explained previously.

In numerical results �e.g., in Fig. 1 and also in Fig. 1c of
Ref. �3��, one feature of the luminescence ��nhne� curve is
that it is nonzero and very nearly constant in most of the
supposedly dark interior of the ring. The constant value is
found to be equal to G, the electron influx density. In other
words, our reaction zone has an “extended” part in the hole
side of the interface.

To explain the constant luminescence for r� lR, as seen in
the numeric simulations and possibly in the experiments, we
relax the assumption that ne�r� vanishes completely inside
the ring �r� lR�. In the steady-state equation for the electron
density, Eq. �2b�, the tunneling term can be neglected com-
pared to G because ne�r� lR��ne���=G�e. The diffusion
term is also small because, away from the interface, ne is
small and smoothly varying. �This is justified more rigor-
ously, a posteriori, in Appendix B.� We are left with
�nh�r�ne�r��G, as required.

A finite �nhne also affects the steady-state hole density
distribution. Feeding �nhne=G into Eq. �2a�, we get a cor-
rection to the expression �3� for the hole density:

nh�r � lR� =
Px

2�Dh
ln� lR�

r
� +

G

4Dh
r2

=
Px

2�Dh
	ln�lR� /r� +

r2

2lsrc
2 
 , �10�

with lR� � lR. Assuming the luminescence peak to be sharp
enough, using the condition nh�r= lR�=0 yields lR� = lR


exp�−lR
2 /2lsrc

2 �.
The lower inset to Fig. 3 shows that Eq. �10�, with the

�G /4Dh�r2 term included, provides perfect agreement with
the numerical simulations. This can be compared to the pre-
vious attempt �Fig. 2�b��. The same inset also shows the
electron density in the hole region �much magnified�, per-
fectly obeying

ne�r � lR� =
G/�

nh�r � lR�
=

2Dh/�

lsrc
2 ln�lR� /r� + 1 � 2r2

. �11�

Note that the decay of ne as one moves away from the inter-
face is not exponential or even power law, but much weaker.

FIG. 3. �Color online� Radius, in units of le,
plotted against Px, in units of �Gle

2. The dots are
from numerical simulations, the solid line is the
improved theory of Sec. III B, and the dashed
line is the theory of Sec. III A. The upper inset
displays the same curves in linear scale to give a
sense of how the curves cross over from inverse-
exponential to power-law behavior as lsrc crosses
le. In the lower inset: Negative-slope curve is
nh�r� lR�, fitted �thick dashed line� with Eq. �10�.
Positive-slope curve is ne�r� lR�, magnified by
five orders of magnitude, with the thick dashed
line showing a fit by Eq. �11�.
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The lR� that gives the best fit to the nh and ne curves is also in
excellent agreement with the prediction above.

An even more dramatic improvement occurs with the pre-
diction for the radius, which we determine, as before, by
imposing Dh
nh��lR�
=De
ne��lR�
:

1

2lR
�lsrc

2 − lR
2 � = le

K1�lR/le�
K0�lR/le�

. �12�

Figure 3 shows how the peak postions obtained from direct
simulation of the diffusion-reaction Eqs. �1� are perfectly
explained by Eq. �12�. The discrepancy of our original at-
tempt following Ref. �3�, as shown in Fig. 2�a�, has been
solved.

The lR� le and lR� le limits are, respectively,

lR = − le + �le
2 + �Px/�G� = − le + �le

2 + lsrc
2

and

lR = le exp	−
2le

2

lsrc
2 − lR

2 
 � le exp	−
2le

2

lsrc
2 
 .

From the solution of Eq. �12�, e.g., from Fig. 3, one observes
that lsrc / le also tends to be large for lR� le. Using this addi-
tional information, the lR� le expression reduces to lR� lsrc
=�Px /�G. This explains the straight line in the log-log plot
of Fig. 3 for large lR/ le. The line has a slope half of that in
the case of the simple theory without an interior correction,
Fig. 2�a�, where the behavior is lR� Px. It is remarkable that
the tiny ne�r� lR�, orders of magnitude smaller than G�e or
nh�r� lR�, actually modifies the global structure of the
steady-state configuration.

C. Finite hole tunneling

We now relax the approximation of infinite hole leakage
time scale �h, so that the hole depletion length lh=�Dh�h is
finite and can play a role. Equation �3� for the hole density is
now corrected to

nh�r� =
Px

2�Dh
K0� r

lh
�	�lR − r� . �13�

For r� lh, the K0 solution reduces to a logarithm, as before.
Note that, since the K0 function does not vanish for finite

arguments, the radius lR cannot be built into nh�r� lR� as a
boundary condition. The discontinuity in Eq. �13� suggests
that the structure of the interface plays a more important role
here compared to the lh→� case. In addition, Eq. �13� also
allows us to infer the ring radius lR using “physical” argu-
ments. The discontinuity can be minimized by having lR
� lh, because the K0�x� function crosses over to �e−x /�x for
x�1. On the other hand, lR cannot be too much larger than
lh, since the hole flux also decreases exponentially for lR
� lh. The radius is therefore expected to be slightly larger
than the hole depletion length lh, for a range of parameters.

As in Sec. III B, one should correct for nonzero
�nh�r�ne�r�, at r� lR

nh�r � lR� =
Px

2�Dh
K0� r

lh
� − G�h, �14�

and

ne�r � lR� =
2Dh/�

lsrc
2 K0�r/lh� − 2lh

2 . �15�

Since the correction to nh�r� is a constant, the extended part
of the reaction zone loses the crucial role it had for lh→� in
the determination of the interface position lR. Assuming
again an infinitely sharp interface at lR and equating currents,

Px

2�lh
K1�lR/lh� = Gle

K1�lR/le�
K0�lR/le�

. �16�

In the lR� le, lR� lh limit,

lR =
1

2
lhW0�Px/4G

le
2lh

2 � =
1

2
lhW0��

4
�lsrc/�lelh�4� . �17�

Here W0�x� is the principal branch of the Lambert W func-
tion �23�. The large-lR behavior for comparable lh and le is
thus logarithmlike rather than power law. Unsurprisingly, in
the lR� le, lR� lh limit, one recovers the lR� le limit of Secs.
III A and III B, lR= le exp�−2le

2 / lsrc
2 �.

Figure 4�a� shows the dependence of the radius on the
hole tunneling. At small lh, the radius obeys Eq. �16� well. As
predicted, here the radius tends to be somewhat larger than
but of the order of the hole depletion length lh. At large lh,
the ring radius approaches the lh=� result of Eq. �12�. There
is an intermediate range of lh where neither equations work.
For the case shown in Fig. 4�a�, this crossover region is 2le
� lh�10le. Presumably, an analytic understanding of this pa-
rameter region requires taking into account the interface
structure details. The author has not been able to incorporate
effects of interface structure into the prediction for the ra-
dius.

Figure 4�b� shows for lh=�2le the radius as a function of
the hole source intensity. For this lh / le, Eq. �16� still works
extremely well.

D. Width and structure of interface

The width lw of steady-state reaction fronts in diffusion-
limited reaction processes is known from heuristic arguments

FIG. 4. �Color online� Ring radius with finite hole tunneling. �a�
Variation with hole depletion length lh, for Px=25�G. �b� Variation
with Px /�G, for lh=�2le. In each plot, dots are from direct simu-
lation of Eqs. �1�. Solid curves are the prediction of Eq. �16� and
dashed curves are the lh=� result, Eq. �12�.
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�7,12� to scale as �DhDe /�J�1/3, where J is the flux of par-
ticles entering the interface region.

In Fig. 5 the steady-state interface width, obtained by
simulation of Eqs. �1�, is displayed as a function of various
parameters. While the variations with the hole diffusion Dh

and the annihilation rate � do follow ± 1
3 exponents quite

closely, the dependence on the electron diffusion De is much
weaker. To understand this, one has to consider the particle
flux J. For both cases of infinite and finite �h, the flux of
electrons into the interface region is J
=Gle�K1�lR/ le� /K0�lR/ le��. There is complicated depen-
dences on the ring position lR, but in the lR� le limit one can

use �K1�x� /K0�x�� →
x�1

1 to simplify

lw � �DhDe

�Gle
�1/3

=
Dh

1/3De
1/6

�1/3G1/3�e
1/6 . �18�

The variation of the numerically determined width with G
�Fig. 5�c�� is also in accord with this prediction. In Figs.
5�a�–5�c� the ring position lR is unchanged.

The variation with De shown in Fig. 5�d� is more com-
plex; in this case lR also changes with De. While the expo-
nent 1

6 works reasonably for an intermediate range of De,
there is a significant deviation at larger De because the ring
radius lR gets smaller, leading to a breakdown of the
K1 /K0�1 approximation. At small De, the interface width is
difficult to define because the interface becomes highly
asymmetric for De�Dh, as indicated by the large error bars
in Fig. 5�d�. In Fig. 5�e� both diffusion constants are varied
together. The interface width is now better defined over a
wide range and the exponent 1

2 �from Dh
1/3De

1/6=D1/3+1/6

=D1/2� works very well.
The detailed structures of nh,e at the interface are difficult

to put in closed form. Within this region ne�r� crosses over
from its r� lR behavior, Eq. �11� or �15�, to its r� lR solu-
tion, Eq. �2b�. In the same region, the hole density crosses
over from its interior solution, Eq. �10� or �14�, to its r� lR
solution which we have not considered yet. For r� lR+ le,
where ne has reached ne�r=��=G�e, the hole density decays

fast, as K0�r / lout�, with the small decay length lout

=�Dh /G�e�= lw
�lw/ le.

We will not attempt to extract details of the crossover,
which can, in principle, be obtained with a lw/ lR expansion,
similar to boundary-layer theory �24� developed in the con-
text of fluid flows near boundaries.

IV. DISCUSSION

Although motivated by particular solid-state experiments,
it is instructive to consider this analysis in the context of
theoretical investigations of steady-state diffusion-limited re-
action fronts and closely related situations. A thorough study
of a simple steady-state front, with diffusion and annihilation
terms and equal and opposite currents, appears in Ref. �7�.
Our calculations are in the same spirit, but we have specific
source and decay terms in addition, which play crucial roles.
A related �and more often studied� phenomenon is that of
time-dependent fronts, where two species are initially well-
segregated �9–11�. Many of the same considerations apply,
with powers of inverse time �t−�� playing a similar role as the
particle flux J does in the steady-state case. Geometries simi-
lar to ours have been considered in Refs. �14,15,25�, where
one species of the reaction-annihilation pair forms an island
in a sea of the other.

We have limited ourselves to the mean-field diffusion-
reaction equations �1�. In principle, mean-field treatments are
valid only above the critical dimension, which happens to be
2. At and below the critical dimension, fluctuations become
important �8,10–13�. In the 2D system of the present paper,
effects of fluctuations may show up in several ways. First,
the form of the annihilation term we have used, �nhne, can be
expected to have logarithmic corrections in 2D �8�. Logarith-
mic corrections are also expected for the power-law scaling
of the width �8,11,12�. We justify the mean-field approxima-
tion by noting that almost all the quantities we have consid-
ered involve large numbers of particles so that fluctuations
are unimportant.

We have assumed that the charged carriers annihilate di-
rectly, neglecting the diffusion, dissociation, and quantum
dynamics of bound excitons �19,20�. Exciton diffusion might

FIG. 5. �Color online� Width �full width at
half maximum� of the luminescence peak, from
steady states obtained by simulation, plotted �log-
log� against various parameters. The error bars
reflect the fact that one could choose half maxi-
mum using either G or zero as the base value of
the luminescence �nenh, since �nenh falls to G on
one side of the peak and to zero on the other side.
In �c�, G is varied while keeping the ratio Px /G
=�lsrc

2 constant. In �e�, Dh and De are varied to-
gether. The straight lines are power-law fits with
exponents �a� 1

3 for Dh, �b� − 1
3 for �, �c� − 1

3 for G,
�d� 1

6 for De, and �d� 1
2 for D=Dh=De.
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cause the observed luminescence width to be larger than
what corresponds to �nhne in our model, but the overall
trends of Sec. III D are not expected to be affected severely.
We have also ignored possible effects of quantum degen-
eracy of the charged carriers, which could change the form
of the diffusion terms, so that Dh,e are themselves density-
dependent �5�. All effects of Coulomb interactions, including
screening effects from the conducting leads �5,6,20�, have
also been left out of our formulation, because the treatment
of Coulomb and screening effects would require detailed
modeling more appropriate for a separate study.

In their brief analytic treatment of the steady state, Butov
et al. �3� have assumed lh=� �lack of hole tunneling decay�
and lR� le. Our results of Sec. III C allow an assessment of
the lh=� approximation �Secs. III A and III B, and Ref. �3��.
Figure 4�a� shows that it is reasonable for lh�10le, but
breaks down for smaller lh. Since �h��e is typical in the
experimental realizations, the lh=� results may well be ex-
perimentally relevant in some cases.

On the other hand, the lR� le approximation is more ques-
tionable. First, with the lR�exp�−� / Px� behavior, a rela-
tively small change in Px can induce an orders-of-magnitude
change in lR. This implies that fluctuations in the effective Px
would cause the ring position to fluctuate wildly, so that the
stable luminescence ring pattern would be unlikely to have
been observed. �Such fluctuations have also been observed in
the numerical simulations for lR� le.� Second, experimental
data on the ring radius as a function of laser power �5,6�
show power-law behavior rather than any strong
exp�−� / Px�-like behavior. While the relationship between Px

and the power is not known, it is unlikely to compensate for
the exp�−� / Px� behavior and give power-law-like
lR-vs-power curves. It is, therefore, important to consider the
lR� le case in detail, as we have done.

We now comment on the experimental lR vs laser power
data �5,6�. The nonmonotonic behavior in Fig. 5 of Ref. �6�
strongly indicates that the dependence of the Px parameter of
our model on the laser power is complicated. Note that Px is
an effective parameter measuring the amount of excess holes
diffusing out of the laser irradiation region. To the best of the
author’s knowledge, the process of generating excess holes
has not been modeled quantitatively, and nothing is known
conclusively about the Px-power dependence. Equations �12�
and �16�, which express the radius lR in terms of Px, cannot
be used to fit the experimental lR vs laser power data without
additional assumptions about the Px-power relationship.

In Ref. �5�, Denev et al. have suggested that the linear
behavior of lR vs power might be due to the importance of
Coulomb terms which are not included in the present
diffusion-reaction model. However, if the effective Px pa-
rameter increases quadratically with the laser power, our lR
��Px prediction for lh� le would also show up as a linear
lR-power result.

Our analytic results gives insight into other simulations,
for example, the numerical results in Fig. 1b of Ref. �5�. The
fact that this curve behaves roughly logarithmically at large
lR �large Px�, rather than as a power law with exponent 1

2 ,
shows that the simulations were done using finite �h, with lh
not too large compared to le. Note that the Lambert W func-

tion of Eq. �17� is roughly logarithmic for large arguments,
W0�x→��� log10 x−log10�log10 x�.

The width of the reaction front is expected to be even
more difficult to study experimentally than the radius. Ex-
perimental study of the width requires finer spatial resolu-
tion, and the parameters involved in Eq. �18� are difficult to
tune individually. The steady-state density distributions Eqs.
�10�, �11�, �14�, and �15� are also not easily measurable in the
electron-hole experimental system that motivates our study.
An alternative realization, using, for example, osmosis from
a reservoir to mimic the electron source term G and osmosis
into a 2D sink to mimic the tunneling decays, would be
useful for studying effects analyzed here.

To summarize, motivated by semiconductor luminescence
experiments, we have investigated a two-species inhomoge-
neous steady state arising from mean-field diffusion-
annihilation equations with a localized source for one species
and an extended source for the other. The source asymmetry
results in a luminescence profile that is a nonzero constant on
the hole side of the interface; this feature is also visible in
some of the experimental pictures. If the holes are not al-
lowed to have single-particle �tunneling� decay, our analytic
solutions for the density profiles and the radius of the ring-
shaped interface are spectacularly successful, as seen from
comparisons to simulation data. When both species are al-
lowed to tunnel out, the quality of the analytic predictions is
more modest. We have detailed the crossover between finite
hole tunneling and zero hole tunneling behaviors of the in-
terface position. The thorough study of the steady state pre-
sented here should serve as a baseline for evaluating the need
to invoke additional physical effects for explaining experi-
mental observations.
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APPENDIX A: NUMERICAL SIMULATIONS

The numeric steady states have been obtained by follow-
ing in time the evolution of Eqs. �1�. The one-dimensional
spatial grid was not linear but chosen to be concentrated at
smaller radial distances. The time evolution due to the diffu-
sion terms was performed by a symmetric combination of
forward and backward Euler evolution. This is sometimes
called the “improved Euler method” and has error O��t3� per
time step. The time steps �t themselves were determined
adaptively, and kept small enough such that the diffusion
terms would not decrease densities below zero.

The terms other than diffusion were treated “exactly”
within each time step, i.e., to order O��t��. For holes, the
change nh�t+�t�−nh�t� is given by
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�nh = �nh�t� − Phe−r2/lL2
/�e��e−�e�t − 1� ,

where �e=�ne�t�+1/�e acts as a decay factor. The electron
evolution in each time step is similar with the source G in-
stead of Phe−r2/lL2

.

APPENDIX B: SMALL ELECTRON DIFFUSION
IN INTERIOR, JUSTIFIED

To justify the neglect in Sec. III B of the diffusion term
De�

2ne compared to G in the r� lR region, one can use

ne�r��G /�nh�r��2Dh�lsrc
2 � ln�lR/r��−1 to estimate the diffu-

sion term. The result can be expressed as


De�
2ne


G
� lw

3 le

lsrc
2 lR

2 = � lw

lR
�3 lR/le

�lsrc/le�2 .

Using the observation �lsrc / le�2� �lR/ le�, from Fig. 3 or
Fig. 4, we see that a sufficient condition for De�

2ne /G to be
negligible is lw� lR, which is true as long as there is a well-
defined interface.
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